The Positive Semidefinite Grothendieck Problem with Rank Constraint

نویسندگان

  • Jop Briët
  • Fernando Mário de Oliveira Filho
  • Frank Vallentin
چکیده

Given a positive integer n and a positive semidefinite matrix A = (Aij ) ∈ R m×m the positive semidefinite Grothendieck problem with rank-nconstraint is (SDPn) maximize m

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grothendieck inequalities for semidefinite programs with rank constraint

Grothendieck inequalities are fundamental inequalities which are frequently used in many areas of mathematics and computer science. They can be interpreted as upper bounds for the integrality gap between two optimization problems: A difficult semidefinite program with rank-1 constraint and its easy semidefinite relaxation where the rank constrained is dropped. For instance, the integrality gap ...

متن کامل

A sub-constant improvement in approximating the positive semidefinite Grothendieck problem

Semidefinite relaxations are a powerful tool for approximately solving combinatorial optimization problems such as MAX-CUT and the Grothendieck problem. By exploiting a bounded rank property of extreme points in the semidefinite cone, we make a sub-constant improvement in the approximation ratio of one such problem. Precisely, we describe a polynomial-time algorithm for the positive semidefinit...

متن کامل

A Semidefinite Optimization Approach to Quadratic Fractional Optimization with a Strictly Convex Quadratic Constraint

In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...

متن کامل

Approximating the little Grothendieck problem over the orthogonal and unitary groups

The little Grothendieck problem consists of maximizing Σ ij Cijxixj for a positive semidef-inite matrix C, over binary variables xi ∈ {±1}. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C ∈ ℝ dn × dn a positive semidefinite matrix, the objective is to maximize [Formula: see text] restricting Oi to take values...

متن کامل

Complexity of the positive semidefinite matrix completion problem with a rank constraint

We consider the decision problem asking whether a partial rational symmetric matrix with an all-ones diagonal can be completed to a full positive semidefinite matrix of rank at most k. We show that this problem is NP -hard for any fixed integer k ≥ 2. Equivalently, for k ≥ 2, it is NP -hard to test membership in the rank constrained elliptope Ek(G), i.e., the set of all partial matrices with of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010